Configuration Management in puppet

Configuration Management in puppet

Will see How Configuration management puppet works in this post.

Let us take a example to create user in complex environment with different Linux distribution. To create a user we have small different in command when we go with different distribution like Red Hat, Ubuntu, CentOS,etc.

We have two method to create user without puppet help.

  1. We can directly login to the servers and will create user when the number of server is less. But, in when the server number hits more 100, its very difficult to create user manually in all user.
  2. We can create script to manage user in all servers. But, for that we should have knowledge about scripting and command different and flags(-u, -U) for each distribution. Once the script created, we need a common server which has access to all the other Linux servers.

But, using puppet we can do any type of user/group management, Package installation, service start/stop/restart, etc. By using puppet built-in resources to achieve the same operation on different distribution without worry about the underlying Operating System and commands.

By using simple code will do the necessary configuration management like
user/group management, Package installation, service start/stop/restart,etc.

Example: To create user will write below code to perform the task over all the Linux machines.

# cat user.pp
user { "lbcuser1" :
ensure => "present",
}

Same like above if you want to delete a user/ install package, etc. Solution is wring simple, robust, idempotent, extendable puppet code to the necessary configuration over remote servers.

same like that will see the code to install ntp package, which is used for network time and starting service.

# cat ntp.pp
package { "ntp":
ensure => "present",
}

service { "ntpd":
ensure => "running",
}

Like this will manage environment using puppet code. In other work managing environment using code will call as Iac(Infrastructure-as-Code).
This code will be applied over all the client machines to do the operation and will reduce the manual effort and time.

And its very essay to change the code for any modification on configuration management over all client machines.

Idempotency:
Puppet codes are idempotent by nature. Which means the results of the code remains same irrespective of the number of time we perform puppet run on nodes.puppet always ensure to keep the resources in desired state.
For example in user creation, it will check whether the user is already exist.
If the user already exist, will not perform the user creation and report us that the user already exist. Basically these checks are already in place of the puppet resources.
And if you have lines of codes to perform a action on remote machines, in such case, if any of your action already exist in any server, puppet simply will skip that action and proceed for further configuration.

These all are the good points to why we are using puppet in our environment for configuration management.

Thanks for your support and reading this post. Will post next lecture about puppet in next post.

Refernce: Puppet Docs

How to patch linux servers using ansible

How to patch linux servers using ansible

Ansible is opensource automation tool and will see how to patch linux servers using ansible in this post.

We are going to use RedHat Linux 7.3 Operating System in this practical.

Requirements:
1. Linux Host Installed with Ansible and Yum repository configured with httpd.
2. Linux Host Installed with RHEL 7.4 -> Node machine
3. Since Ansible requires SSH enabled between ansible master and node and don’t have node package, Make sure SSH connection established between Master and node.

Configuring yum repository for patching:
  1. browse https://access.redhat.com/ and login with valid credentials.
  2. Click on Security -> Security Advisories and downlod the necessary packages.
  3. Copy those packages to yum repository where all existing packages are available in Linux host. I downloaded and copied kernel update in my repository.
 
# yum list all | grep 3.10.0-1062.el7
kernel.x86_64 3.10.0-1062.el7 @yum_repo
kernel-headers.x86_64 3.10.0-1062.el7 yum_repo
kernel-devel.x86_64 3.10.0-1062.el7 yum_repo
kernel-tools.x86_64 3.10.0-1062.el7 yum_repo
kernel-tools-libs.x86_64 3.10.0-1062.el7 yum_repo

4. Run createrepo, “yum clean all” & “yum makecache” commands to update the repository along with new RPM’s.

Now the repository is ready for patching.

Ansible playbook for Linux patching:
  1. Login to Ansible Host and change directory to /etc/ansible
#cd /etc/ansible

2. create playbook called “patching.yml” with below content

# vi patching.yml
---
- name: Patch Linux system
hosts: Linux_Servers
become: true
ignore_errors: yes
tasks:
- name: Copy the Kernel Patch Repo File
copy:
src: /etc/yum.repos.d/yum.repo
dest: /etc/yum.repos.d/
- name: Apply patches
yum:
name: kernel
state: latest

3. Edit /etc/ansible/hosts file and provide Linux hosts which needs to be patched and mention group as “Linux_Servers” for those hosts. Host group name has been mentioned in playbook in “hosts: Linux_Servers” portion.

# cat /etc/ansible/hosts
[Linux_Servers]
client.lbc.com

4. Now run the playbook from Ansible host and make SSH connection established between master and client.

# ansible-playbook patching.yml
Before kernel patching:

# uname -a
Linux client.lbc.com 3.10.0-862.el7.x86_64 #1 SMP Wed Mar 21 18:14:51 EDT 2018 x86_64 x86_64 x86_64 GNU/Linux

After kernel Patching:

# uname -a
Linux client.lbc.com 3.10.0-1062.el7.x86_64 #1 SMP Thu Jul 18 20:25:13 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

We successfuly completed kernel patching. Reference: